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Using Monte Carlo molecular dynamics, a new, careful study is made of the 
approach of the trajectory of a typical particle in a hard sphere fluid to that of a 
Brownian particle, discussed before by Powles and Quirke and Rapaport. The 
apparent fractal dimension of the trajectory, as a function of reduced length 
scale, A(t/), characterizes the transition from mechanical to Brownian motion 
and differs markedly from 2 in all present computer simulations. 
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The geometry of the trajectory of a molecule has been studied in the last 
year, stirred by Mandelbrot 's monograph on the geometry of irregular 
shapes. (1) Mandelbrot argued that the particle trajectories in an N-particle 
system would, for large N, essentially be that of a Brownian particle, with 
fractal dimension A = 2. 

Recently, a molecular dynamics calculation was carried out by Powles 
and Quirke for a system of 108 Lennard Jones particles, (2) subject to 
periodic boundary conditions at values of density and temperature charac- 
teristic of a dense liquid. They concluded that A = 1.65 and that A might be 
a function of the thermodynamic state of the system. Their results were 
criticized by Rapaport (3~ who studied a system of 1372 hard spheres with 
periodic boundary conditions at three distinct densities. He concluded that 
A = 2 in each case and that the reason that Powles and Quirke had found a 
smaller value was that their trajectory was not long enough. 

While this criticism is justified, Rapaport 's argument does not clarify 
the matter entirely. He reported results for the fractal length as a function 
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of length scale e which were consistent, at the largest values of the length 
scale, with the A =2  interpretation but which contained such large 
statistical uncertainty as to be consistent with the Powtes-Quirke value as 
well. Moreover, at a given density, Rapaport studied the dependence of his 
results neither on the number of particles in the system nor on the overall 
length of the trajectory. The former dependence is needed to show that the 
calculations are relevant for the system in the thermodynamic limit. The 
latter is important, since his data extend into a regime of length scales 
where the fractal length depends strongly on the overall length of the tra- 
jectory; therefore, his conclusion regarding the fractal dimension, which 
depends critically on the large length-scale data, is not well substantiated. 

In this note we study the behavior of the fractal dimension of hard 
sphere trajectories at a single fluid density. However, rather than simply 
observing the fractal length for a single system, we study the fractal dimen- 
sion as a function of length scale for a number of system sizes and trajec- 
tory lengths, so that we can extrapolate to large values of each of these 
parameters. Also we resolve the very large statistical uncertainties seen in 
Rapaport's results by using much more extensive averaging. From such 
results, then, we attempt to observe the transition from dynamical behavior 
(A--1) at small e to Brownian behavior (A=2) at large 5. Our results 
show a slow approach of A to an asymptote, on a length scale of at least 
100 mean free paths. Indeed we conclude that the fractal dimension of 2 
cannot be observed for trajectories as short as considered by either 
Rapaport or us. Somewhat in the spirit of Powles and Quirke, we observe 
that the way A approaches 2 with increasing length scale may well be a 
function of the thermodynamic state. 

Our calculations were carried out using Monte Carlo molecular 
dynamics, the details of which will be discussed elsewhere. The apparent 
fractal dimension of a trajectory was defined, using Richardson's definition 
A(e)= 1-d[ lnL(e) ] /d ( ln  e). (1~ The fractal length L(e) as a function of 
length scale e is obtained from the ensemble average of the trajectory 
length of a particle by applying dividers of length e along the trajectory 
generated to a final time ty. Thus both L and A will depend on the 
parameter tf and the number of particles iV. To obtain the dependence on tj 
we consider trajectories with tf varying from 200too to 6000to0, where too is 
the Boltzmann mean free time. At the volume of twice close-packing for 
which the calculations were done, the actual mean free time, to, is about 
too/3, so that our longest trajectories are about double those of Rapaport. 
The trajectory calculations were performed with roughly 14 digits of 
numerical precision, so that the trajectories are typically accurate out to 
times of about 50 mean free times. (4) Nonetheless, we expect that fractal 
lengths computed with our approximate trajectories will remain meaningful 
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even for longer times, just as calculations of the equation of state and the 
velocity autocorrelation function appear to be unaffected by the precision 
of the trajectory. (4,5) 

Two choices can be made for L(e) depending on whether one does or 
does not include the final portion of the trajectory, beyond the point where 
the dividers last intersect the trajectory. These two different choices corres- 
pond to those made by Powles and Quirke and Rapaport, respectively. By 
averaging the L(e) over each of the N particles in the system and also over 
a number of initial phases, selected through the Metropolis Monte Carlo 
technique, we have reduced the statistical uncertainties to much lower 
levels than previously reported. 

We carried out calculations for systems of N =  108, 500, 1372, and 
4000 particles and only included results for L(e) for those e for which the 
precise treatment of the tail portion of the trajectory was not important. In 
Fig. 1, the apparent fractal dimension A(7) is plotted as a function of 

= ell, where l is the actual mean free path of the system. The values of 
A(7) were derived by extrapolating the measured values of A(7; t i ,  N)  
(obtained by numerical differentiation of the L(e) data) using the double 
limit N--, oo, ti-> oe of the least-squares fit A(7; t i ,  N ) = A ( q ) + a ( 7 ) / t f + -  
b (7) /N  to our data. We do not show results for 7 > 60, even though our 
calculations include reliable results for the L(e) for e as large as 200/, 
because uncertainties introduced both in the numerical differentiation to 
obtain A and the extrapolations in N and t i result in much less precise 
estimates of A for larger values of 7. To illustrate the effects of our fitting, 
Fig. 1 also shows the data for our largest value of N for t s- = 2000too. While 
Fig. 1 does not contradict A = 2 for large 7, it does not prove it either. The 
difference with Rapaport's result is related to his use of fractal lengths out 
to values of 7 = 180, which (for his value of tf) is about twice the value of 7 
for which the two different definitions of L(e) agree. The function A(7) in 
Fig. 1 exhibits an unexpectedly slow transition from dynamical motion 
(A = 1) to presumably Brownian motion (A =2).  In fact, the value 2 will 
certainly not be achieved before 7 = 100, clearly requiring trajectories with 
lengths considerably in excess of those studied up to now. Moreover, the 
function A(q) may well depend on the thermodynamic state. 

We conclude with the following remarks. 

1. The slow approach of A to 2 is a consequence of the dynamic 
nature of the hard sphere trajectory, as opposed to the random nature of 
that of a Brownian particle. The dynamics imposes restrictions on the 
motion of a particle that translate into velocity correlations that only 
vanish after about 25 col l is ions.  (4'6) 

2. Although the mean square displacement of a particle is linear in 
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Fig. 1. Apparent fractal dimension A(t/) as a function of reduced length scale 7, in units of 
the mean free path. The circles are the extrapolation of our results to the limits of infinite tra- 
jectory length and number of particles. The squares are the results for the longest trajectory 
(t/= 2000too) for our largest system (N= 4000). Where no squares are shown, the circles and 
squares overlap. The curve is an approximate theoretical result. 

the time after 25 collisions, A ~ 2 after even 60 collisions�9 This is because 
our  largest e is not  very large compared  to 25/, the value of the root  mean 
square displacement for which the diffusive regime begins. Therefore, each 
time one puts a divider of length e a long the trajectory to obtain L(e), the 
dynamical ly correlated, n o n r a n d o m  and nondiffusive par t  of the trajectory 
that  is included is considerable. A calculation of the fractal length based on 
the approximate  relation, L ( ~ ) =  [ t / / t (e )]  ~ in which t(e) is the time at 
which the root  mean  square displacement is ~, yields the curve shown in 
Fig. 1, which shows a similar slow approach  to the Brownian limit. To 
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obtain this curve, the mean square displacement was obtained by (twice) 
integrating a simple approximation for the observed velocity 
autocorrelation function, ~4) (Vl 'Vl( t ) )=2D/[~( t /2 to)2] ,  where Vl is the 
velocity of particle 1 and D is the self-diffusion constant, taken to be 1.2 
times the Enskog value at this densityJ 6) Thus, although from a dynamical 
point of view a particle trajectory is that of a Brownian particle after 25 
mean free times, from a geometric point of view this can only be seen using 
length scales far in excess of 25 mean free paths. 

3. The new function A(q) characterizes the "space-filling" capacity of 
the trajectory as measured at length scale t/. A < 2 means that the particle 
appears not to move sufficiently randomly and not to backtrack sufficiently 
often to obtain the value A = 2 typical for the Wiener process and Brow- 
nian motion. The least space-filling motion is the purely dynamical one of a 
single particle along a straight line for which A = 1. On the other hand, a 
value A > 2 is expected when the backtracking is more than in a random 
motion, as in the overlapping wind-tree model. 17/ The reason that under 
normal conditions in nature one finds A = 2 is that the number of particles 
involved as well as the e scale used are so large that the dynamically 
correlated portion of e is completely negligible compared to the random 
portion. Then the Wiener process and diffusion are excellent 
approximations. Our calculations show that this is not necessarily true on 
the scale accessible in molecular dynamics. The function A(r/) characterizes 
then the approach to Brownian motion by indicating the apparent space- 
filling capacity of a particle trajectory as a function of length scale. 
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